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Background. BK polyomavirus  (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence 
of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. 
Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized 
a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of 
antigen-presenting cells, and CD4 T cells.

Methods. Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from periph-
eral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers 
(27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or 
immunodominant 9mers.

Results. BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) 
for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and 
tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic.

Conclusions. Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in pres-
ence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after 
kidney transplantation.

Keywords.  BK virus; polyoma; T cells; peptides; antigen-presenting cells; vaccine.

In the current clinical pretolerance era, the success of 
kidney transplantation is demonstrated by allograft sur-
vival rates of up to 97% in the first year posttransplantation 
[1, 2] but depends on immunosuppressive therapies [3] to 
avert acute and chronic immunological injury resulting 
from T-cell–mediated and antibody-mediated rejection [4]. 
The unspecific nature of the standard immunosuppression 
protocols not only affects antidonor immunity but also im-
pairs antiviral immune control, increasing the risk for viral 
complications [5], which may impact renal allograft sur-
vival rates [1, 2]. BK polyomavirus (BKPyV) plays a unique 

role in kidney transplantation as it continues to directly 
and indirectly contribute to premature allograft failure 
[6–9]. Prospectively collected data from the multicentric 
Swiss Transplant Cohort Study on 2761 patients under-
going solid organ transplantation included 1612 kidney and 
73 kidney-pancreas recipients, who experienced 572 (26%) 
clinically relevant viral infectious disease events in the first 
12 months posttransplantation [10]. BKPyV DNAemia was 
diagnosed in 275 of the 1685 (16%) recipients including 99 
(6%) cases of presumptive and proven BKPyV nephropathy, 
in line with earlier studies [8, 11–16].

BKPyV is a nonenveloped double-stranded DNA virus 
infecting >90% of the human adult population without known 
illness and thereafter persists in the renourinary tract [17, 18]. 
Despite BKPyV-specific T cells [19–21] and neutralizing anti-
bodies [14, 22, 23], asymptomatic low-level urinary virus shed-
ding occurs in 10% of immunocompetent healthy individuals 
[24], indicating the ability of BKPyV to at least transiently es-
cape from immune control [25, 26]. Following kidney trans-
plantation, renourinary BKPyV replication increases in rate 
and magnitude, progressing to high-level viruria with decoy 
cell shedding and urine viral loads of >10 million copies/mL in 
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20%–40%, BKPyV DNAemia in 10%–20%, and biopsy-proven 
nephropathy in 1%–15% [9, 11, 27, 28], and may even progress 
to urothelial cancer [29, 30].

Although several risk factors have been linked to BKPyV 
DNAemia and nephropathy, impaired BKPyV-specific antiviral 
immune control appears to be the common denominator [9, 
22]. Conversely, reducing immunosuppression has been asso-
ciated with regaining immune control over BKPyV replication 
while increasing the risk of allograft rejection [20, 31–35]. In an 
initial characterization of BKPyV-specific CD4 and CD8 T-cell 
responses and clearance of BKPyV replication [20], we observed 
that CD8 T-cell responses were higher to the nonstructural early 
viral gene region–encoded large tumor antigen (LTag) [20], 
whereas CD4 T-cell responses were more frequently directed 
toward the late viral gene region–encoded major viral capsid 
protein Vp1 and correlated with Vp1 antibody titers [36]. We 
have therefore focused on BKPyV-specific CD8 T cells as key 
cytotoxic effectors targeting virus-replicating host cells using 
a pool of 97 bioinformatically predicted immunodominant 
9mers (9mP) [21]. Importantly, clearance of BKPyV DNAemia 
was associated with increased CD8 T-cell responses to the 
immunodominant 9mP and included confirmation of 78 dif-
ferent 9mers presented by several HLA types [37], including 
those associated with protection from BKPyV-DNAemia in 
kidney transplant recipients [38–40]. Here, we investigated the 
role of synthetic peptide pools, antigen-presenting cells (APCs), 
and CD4 T cells for expanding BKPyV-specific CD8 T cells in 
vitro as a first step to develop novel and safe approaches to vac-
cination and adoptive T-cell therapies for patients undergoing 
kidney transplantation.

MATERIALS AND METHODS

Healthy Blood Donors

Fresh buffy coats from 30 donors (Supplementary Table 
1) were obtained from the blood donation center in Basel, 
Switzerland. Peripheral blood mononuclear cells (PBMCs) 
were cryopreserved as described [21]. Human leukocyte 
antigen (HLA) typing was performed by next-generation 
sequencing using TruSight-HLA version 2 sequencing Panel 
(Illumina, San Diego, California) and Miniseq high-output 
reagent kit (300 cycles) (Illumina, FC-420–1003). BKPyV-
Vp1-VLP–specific immunoglobulin G antibody status was de-
termined using a normalized enzyme-linked immunosorbent 
assay as described previously [41].

BKPyV EVGR-Derived Peptides and Cell Culture

All peptides were >70% pure and dissolved in dimethyl 
sulfoxide (DMSO; 10  mg/mL, Eurogentec, Seraing, 
Belgium). PBMCs were isolated on a Ficoll density gra-
dient (Lymphoprep, Alere Technologies AS, Wädenswil, 
Switzerland, 1114545). CD14+ monocytes were sorted using 

CD14 Microbeads (Miltenyi Biotec, Bergisch Gladbach, 
Germany, 130-050-201) and differentiated into immature 
monocyte-derived dendritic cells (imMo-DCs) in 7  days 
using monocyte-derived dendritic cell (Mo-DC) differen-
tiation medium (Miltenyi-Biotec, 130-094-812). In brief, 
CD14+ cells were plated at 1 × 106 cells/mL in 6-well plates 
and half of medium (1.5  mL) was changed on day 3.  For 
maturation of Mo-DCs, RPMI medium (Sigma-Aldrich, 
St Louis, Missouri, R2405) supplemented with fetal calf 
serum (10%, Biochrom, Berlin, Germany, S0115), gluta-
mine (2  mM, Bioconcept, Allschwil, Switzerland, 10K50-
H), and tumor necrosis factor alpha (TNF-α; 100  ng/mL, 
Miltenyi-Biotec, 130-094-015) was used and 1 × 106 cells/
mL were plated in 24-well plates during 3 additional days. 
Monocyte-derived Langerhans cells (Mo-LCs) were differ-
entiated from CD14+ cells in 6  days using RPMI medium 
supplemented with transforming growth factor β (10  ng/
mL, Miltenyi Biotec, 130-095-067), granulocyte macro-
phage colony-stimulating factor (GM-CSF; 100  ng/mL, 
Miltenyi Biotec, 130-095-372), and interleukin 4 (IL-4; 
10 ng/mL, PeproTech, London, United Kingdom, 200–04). 
On days 2 and 4, half of medium (500 μL) was changed with 
medium without IL-4.

Nine-Day Expansion of T Cells

APCs were pulsed with 27mP (1  μg/mL) or 15mP (0.5  μg/
mL) for 4 hours at 37°C/5% carbon dioxide. After washing, 
APCs were added to autologous CD14– cells in a 1:10 ratio 
and cocultured for 9 days. On day 4, interleukin 2 (20 U/mL, 
PeproTech, 200–02) and interleukin 7 (5  ng/mL, PeproTech, 
200–07) were added. On day 9, the cells were analyzed.

Enzyme-Linked Immunosorbent Spot Assay

BKPyV-specific T-cell responses were determined by meas-
uring the number of IFN-γ–secreting cells using IFN-γ 
enzyme-linked immunosorbent spot assay (ELISpot), as 
described previously [20, 21, 37]. In brief, expanded T cells 
were rechallenged with BKPyV-specific peptides (15mP 
or 9mP, 0.5  μg/mL) for 18–24 hours. Cells stimulated with 
phytohemagglutinin-L (PHA, 1  μg/mL, Roche Diagnostics, 
Rotktreuz, Switzerland) were used as positive control and un-
stimulated cells were used as negative control. ELISpot data 
are averaged of duplicates after subtracting the background 
(negative control).

Flow Cytometry Analysis

Expanded cells were rechallenged with 15mP or 9mP (0.5 μg/
mL, Eurogentec) for 6 hours in the presence of Golgi stop 
(Becton Dickinson [BD], Franklin Lakes, New Jersey, 554715). 
Cells incubated with RPMI medium alone served as negative 
control and cells stimulated with staphylococcus enterotoxin 
B (3 μg/mL, Sigma-Aldrich, S4881) served as positive control. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/223/8/1410/5898575 by Inactive user on 04 February 2022

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa546#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa546#supplementary-data


1412 • jid 2021:223 (15 April) • Wilhelm et al

For extracellular staining, the following antibodies were used: 
CD14 (BD, 555399), CD209 (Miltenyi Biotec, 130-099-707), 
HLA-DR (BioLegend, San Diego, California, 307617), CD86 
(BioLegend, 305426), CD83 (BioLegend, 305326), CD4 (BD, 
562424), CD8 (BioLegend, 301012), CCR7 (BD, 561144), 
CD45RA (BD, 550855), PD1 (BD, 557946), CD69 (BD, 555530), 
CD107a (BD, 561348), and phycoerythrin-labeled streptamer 
(IBA, Hamburg, Germany). For intracellular staining, the fol-
lowing antibodies were used: CD207 (BD, 564727), CD1a 
(BD, 563939), IFN-γ (BD, 341117), and TNF-α (BD, 554512). 
Acquisition was done on a Fortessa cytometer (BD) and ana-
lyzed using FlowJo version 10.6.1 software.

Carboxyfluorescein Diacetate Succinimidyl Ester Proliferation Assay

CD14– cells were stained with carboxyfluorescein diacetate 
succinimidyl ester (CFSE, 0.25  μM, Invitrogen, Carlsbad, 
California, 0850-84) before being expanded with autologous 
27mP pulsed mature monocyte-derived dendritic cells (mMo-
DCs) and analyzed by flow cytometry on day 9.

Cathepsin Inhibitor I and Lactacystin Treatment

Mature Mo-DCs were pulsed with 27mP (1 μg/mL) for 4 hours 
in the presence or absence of cathepsin inhibitor I  (10  μM, 
Millipore, Burlington, Massachusetts, 219415)  or lactacystin 
(2.5  μg/mL, Millipore, 426100). As solvent control, cells 
were incubated with DMSO and peptides. Cell viability was 
measured using trypan blue (Bio-Rad, Hercules, California, 
1450013) after the treatment.

T2 Binding Assay

TAP-negative B X T hybrid cell line 174 X CEM.T2 and HLA-
A2+ (T2 cells, ATCC-CRL-1992) were used for HLA-peptide 
stabilization assay. One hundred thousand T2 cells were incu-
bated overnight either with 9m579, 9m227, 15m577, or 27m570 
peptides (10  μg/mL) in a 96-well U-bottom plate with RPMI 
medium at 37°C. After incubation, cells were washed with 
phosphate-buffered saline (PBS) and assessed for surface major 
histocompatibility complex class I expression by flow cytometry 
using HLA-A2 antibody (eBioscience, San Diego, California, 
25-9876-42).

Killing Assay

Expanded BKPyV-specific T cells labeled with CFSE were 
used as effector cells and autologous PHA blasts stained with 
CellTrace Violet (Invitrogen, C34557) were used as target 
cells. PHA blasts were pulsed with 9mP (2  μg/mL) overnight 
and co-cultured with expanded T cells for 6 hours at different 
target:effector cell ratios. Target cells without effector cells were 
used as control. Autologous PBMCs stained with CellTrace Far 
Red (Invitrogen, C34564) were used for the normalization and 
acquisition of target and effector cells using flow cytometry. 
Specific killing was then calculated as 100 – (100 × [normalized 
events in sample / normalized events in control sample]).

Statistical Analysis

Data were analyzed with GraphPad Prism software version 8.3.1. 
Paired and nonparametric Wilcoxon tests were used. One-sided 
P values of <.05 were considered statistically significant.

RESULTS

Generation of APCs and Impact of CD4 T-Cell Depletion on BKPyV-Specific 

CD8 T-Cell Responses

A pool of 36 27mers (27mP) covering the entire BKPyV LTag 
protein was compared with a pool of 180 LTag 15mers (15mP; 
Figure  1A), which permitted to expand BKPyV-specific CD8 
and CD4 T cells from healthy donors and kidney transplant 
recipients [20]. To investigate the role of different types of 
APCs in response to the longer 27mP, we differentiated from 
PBMCs of healthy blood donors, namely Mo-LCs (Figure 1B, 
top), imMo-DCs, and mMo-DCs (Figure 1B, bottom). The re-
spective APCs were pulsed with 27mP or 15mP and cocultured 
with autologous CD14– PBMCs for 9 days followed by ELISpot 
or flow cytometry using 15mP or 9mP to assess the T-cell re-
sponses (Figure 1C).

First, we evaluated the role of CD4 T cells by pulsing imMo-
DCs with 15mP followed by co-culture either with CD14– cells 
or CD14– cells after CD4 depletion. The results of the IFN-γ 
ELISpot assay indicated that the restimulation responses to 
the overlapping 15mP and the immunodominant 9mP were 
reduced in case of CD4 depletion (Figure 1D, left panel). The 
flow cytometry results indicated that this also affected BKPyV-
specific CD8 T-cell responses (Figure  1D, right panel). We 
concluded that even in the case of the 15mP, CD4 T cells con-
tributed to expanding BKPyV-specific CD8 T-cell responses.

BKPyV-Specific T-Cell Responses to LTag-Specific 27mP in imMo-DCs

To investigate the BKPyV-specific T-cell responses to the 27mP, 
imMo-DCs were pulsed either with 27mP or with the 15mP or 
mock-treated as controls followed by a 9-day co-culture with 
CD14– cells. By ELISpot assay, 15mP rechallenge induced signif-
icantly higher IFN-γ responses following both 15mP or 27mP 
pulsing compared to mock-treated cells (Figure 2A, left panel). 
By flow cytometry, a significant increase in IFN-γ–producing 
CD4 T cells was observed for both 15mP- or 27mP-pulsed 
imMo-DCs (Figure 2A, middle panel). Similarly, significant in-
creases were observed for IFN-γ–producing CD8 T cells after 
27mP expansion, although overall responses appeared weaker 
than the corresponding CD4 T-cell responses (Figure 2A, right 
panel). To more directly test the CD8 T-cell responses, we 
restimulated the 9-day co-cultures with the 9mP (Figure 2B). 
Overall, ELISpot and flow cytometry indicated significantly 
increased 9mP-dependent responses (P = .0625 and P = .0312, 
respectively) as illustrated in Figure 2C. Analysis of nonpulsed 
imMo-DCs indicated that the IFN-γ responses were dependent 
on pulsing with the respective peptide pools, as expected 
(Supplementary Figure 1). We concluded that BKPyV-specific 
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Figure 1. Modulators of BK polyomavirus (BKPyV)–specific CD8 T-cell responses. A, Schematic representation of large tumor antigen (LTag), small tumor antigen (sTag), and 
overlapping peptide pools. The 15mer pool (15mP) consisted of 180 peptides of 15 amino acids (aa) in length overlapping by 11 aa and covers the entire BKPyV LTag (Dunlop 
strain) as described previously [20]. The 27mer pool (27mP) consisted of 34 peptides of 27 aa, 1 peptide of 26 aa, and 1 peptide of 31 aa in length (Supplementary Table 2) 
overlapping by 8 aa also covering the entire BKPyV LTag (Dunlop strain). The 9mer pool (9mP) consisted of 97 bioinformatically predicted immunodominant 9mer peptides 
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CD8 T-cell responses could be elicited by pulsing imMo-DCs 
with the novel 27mP, although overall 15mP and CD4 T-cell 
responses tended to be stronger.

BKPyV-Specific T-Cell Responses to LTag-Specific 27mP in Mo-LCs

To investigate whether or not Mo-LCs would shift the BKPyV-
specific T-cell expansions toward CD8, we pulsed Mo-LCs with 

15mP or 27mP and compared the results with imMo-DC. By 
ELISpot assay, 15mP rechallenge induced higher IFN-γ re-
sponses in Mo-LCs after 15mP- or 27mP-dependent expan-
sion compared to imMo-DCs (Figure 3A, left panel), whereas 
the 9mP rechallenge showed little difference between both 
APC preparations regarding CD8 T-cell responses (Figure 3A, 
right panel). Flow cytometry indicated that IFN-γ–producing 
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Figure 2. In vitro expansion of BK polyomavirus (BKPyV)–specific T cells induces large tumor antigen–specific 15mP and 9mP T-cell responses. Immature monocyte-derived 
dendritic cells were pulsed with 15mP or 27mP and co-cultured with autologous CD14– peripheral blood mononuclear cells. After the expansion, cells were rechallenged 
either with 15mP or 9mP. As a negative control, cells were not rechallenged (Mock). T-cell responses were measured as interferon gamma (IFN-γ) production using enzyme-
linked immunosorbent spot assay (ELISpot) or flow cytometry. A, Comparison of the number of IFN-γ–secreting cells after 15mP rechallenge or without rechallenge (Mock) 
measured by ELISpot (left panel). Percentage of IFN-γ–producing CD4 (middle panel) or CD8 T cells (right panel) measured by flow cytometry. B, Comparison of the number 
of IFN-γ–secreting CD8 T cells after 9mP rechallenge or without rechallenge (Mock) measured by ELISpot (left panel). Percentage of IFN-γ–producing CD8 T cells measured 
by flow cytometry (right panel). C, Representative dot plots of BKPyV-specific CD8 T-cell responses expressed by IFN-γ production. Wilcoxon 1-tailed nonparametric test. 
Abbreviations: IFN-γ, interferon gamma; PBMCs, peripheral blood mononuclear cells; SFU, spot-forming units.

derived from the BKPyV LTag as described previously [21, 37]. B, CD14+ monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of healthy donors and 
differentiated into different antigen-presenting cells (APCs). Top: Comparison of intracellular expression of CD1a and CD207 (Langerin) measured in monocytes (day 0) and 
differentiated monocyte-derived Langerhans cells (day 6). Bottom: Comparison of extracellular expression of CD209 (DC-SIGN), CD83, and human leukocyte antigen–DR in 
monocytes (day 0), immature monocyte-derived dendritic cells (imMo-DCs, day 7) and mature monocyte-derived dendritic cells. C, Experimental flow of T-cell expansion. 
CD14+ monocytes were differentiated into different APCs, pulsed with 27mP or 15mP, and cocultured with autologous CD14– cells for 9 days. After expansion, cells were 
rechallenged with 15mP or 9mP and tested for interferon gamma (IFN-γ) production by enzyme-linked immunosorbent spot assay (ELISpot) and flow cytometry. D, Immature 
Mo-DCs were pulsed with 15mP and cocultured either with CD14– cells (–) or CD4-depleted CD14– cells (+) for 9 days and then rechallenged with 15mP or 9mP. BKPyV-specific 
CD8 T-cell responses were compared with or without CD4 help using IFN-γ ELISpot (left panel) and flow cytometry (right panel). The results are expressed as IFN-γ spot-
forming units per million PBMCs in ELISpot and as percentage of IFN-γ–producing CD8 T cells in flow cytometry data. Wilcoxon 1-tailed nonparametric test. Abbreviations: 
APCs, antigen-presenting cells; ELISpot, enzyme-linked immunosorbent spot assay; HLA, human leukocyte antigen; FACS, fluorescence activated cell sorting; IFN-γ, interferon 
gamma; IL-2, interleukin 2; IL-7, interleukin 7; imMo-DCs, immature monocyte-derived dendritic cells; LTag, large tumor antigen; MFI, mean fluorescence intensity; mMo-DCs, 
mature monocyte-derived dendritic cells; Mo-DCs, monocyte-derived dendritic cells; Mo-LCs, monocyte-derived Langerhans cells; PBMCs, peripheral blood mononuclear 
cells; SFU, spot-forming units; sTag, small tumor antigen.
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CD4 T-cell responses were increased with Mo-LCs compared 
to imMo-DCs, whereas no differences between both APCs 
were seen regarding CD8 T cells (Figure  3B). We concluded 
that pulsing either Mo-LCs or imMo-DCs permitted the novel 
27mP-dependent expansion of BKPyV-specific CD8 T cells, yet 
without favoring one over the other (Figure 3B).

BKPyV-Specific T-Cell Responses to LTag-Specific 27mP in mMo-DCs

To investigate whether mMo-DCs would shift the BKPyV-
specific T-cell expansions toward CD8, we pulsed mMo-DCs 
with 15mP or 27mP and compared the results with imMo-DC. 
By ELISpot assay, 15mP rechallenge induced similar IFN-γ re-
sponses in mMo-DCs after 15mP- or 27mP-dependent expan-
sion compared to imMo-DCs (Figure 4A, left panel). By flow 
cytometry, IFN-γ–producing CD8 T-cell responses were in-
creased in expansion cultures using mMo-DCs compared to 
imMo-DCs (P = .0312), whereas no significant differences were 

observed between both APCs regarding CD4 T cells (Figure 4A, 
middle and right panels).

To more directly test the CD8 T-cell responses, we 
rechallenged expanded cells with 9mP (Figure 4B). By ELISpot, 
no significant difference between mMo-DCs and imMo-DCs 
was observed for 15mP or 27mP pulsing (Figure 4B, left panel), 
whereas by flow cytometry (Figure 4B, middle and right panel), 
an increase of 9mP-specific CD8 T-cell responses was observed 
for 27mP pulsing using mMo-DCs compared with imMo-DCs 
(Figure  4C). We concluded that mMo-DCs increased proc-
essing and presentation of 27mP, resulting in higher BKPyV-
specific CD8 T-cell responses compared to imMo-DCs.

Characterization of BKPyV-LTag 27mP Presentation

To investigate whether or not CD8 T-cell stimulation by 27mers 
resulted from direct binding to MHC class  I  molecules due to 
the high peptide concentrations used for pulsing, a T2 assay was 
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performed (Figure 5A). Since T2 cells lack the peptide transporter 
TAP required for binding and stabilization of HLA-A2 by endoge-
nous class I epitopes, detection of HLA-A2 on the cell surface de-
pends on stabilization by exogenous peptides. To this end, we used 
the previously identified HLA-A2 binding epitope 9m679 as posi-
tive control for HLA-A2 surface stabilization [21, 37] (Figure 5A). 
Unlike 9m679, the corresponding 27m670 harboring the 9m679 
peptide sequence showed similarly low levels as no peptide, the 
non-HLA-A2 binding 9mer227, or the 15m573. The results indi-
cated that 27m670 was not able to stabilize HLA-A2 on T2 cells. 
Thus, 27mer peptides were unlikely to elicit CD8 T-cell responses 
by direct binding to HLA class I molecules on the cell surface.

To investigate whether 27mer peptides require antigen proc-
essing before presentation and CD8 T-cell activation, we treated 
mMo-DCs with pan-cathepsin inhibitors I  or the proteasome 
inhibitor lactacystin, which have been reported to preferen-
tially inhibit proteolytic processing by vacuolar or cytosolic 

pathways of in vivo–generated dendritic cells [42], respectively. 
Compared to the solvent control, the cathepsin inhibitors had 
little effect on BKPyV-specific CD8 T-cell responses as meas-
ured by 9mP IFN-γ ELISpot or flow cytometry (Figure 5B, left 
panels), whereas a strong trend toward lower responses was ob-
served by flow cytometry in the lactacystin-treated mMo-DCs 
(Figure 5B; right panels; P = .0625) as illustrated in Figure 5C. 
Both inhibitors did not affect cell viability at the concentrations 
used (Supplementary Figure 2). We concluded that 27mP did 
not bind directly to HLA class I, but required proteolytic proc-
essing by proteases partly inhibited by lactacystin, which are typ-
ically present in the cytosolic pathway.

Expanded BKPyV-Specific CD8 T Cells Have Functional Effector Memory 

Phenotype

To characterize the overall CD8 T-cell phenotype present after 
expansion using 27mP-pulsed mMo-DCs, we examined CCR7 
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and CD45RA expression on day 0 and day 9 (Figure  6A, top 
row). The data show that CD8 T effector memory cells in-
creased (CCR7–/CD45RA–; 32.2% [day  0]; 65.0% [day  9]), 
whereas terminally differentiated effector memory CD8 T cells 
were reduced (CCR7–/CD45RA+; 62.3% [day 0]; 28.5% [day 9]). 
After 9mP rechallenge on day 9, 64.4% of IFN-γ–producing 
CD8 T cells were found to have effector memory phenotype 
(Figure 6A, bottom). Comparing CFSE-labeled CD14– PBMCs 
on day 0 and on day 9 indicated that CD8 T cells had been pro-
liferating during the 9-day co-culture (Figure 6B). Stimulation 
with the immunodominant 9mP revealed that IFN-γ was 
mostly produced by the proliferating CD8 T-cell population 
(Figure 6B), which was also polyfunctional as indicated by the 
simultaneous production of TNF-α (Figure  6C). The exhaus-
tion marker PD1 was found on approximately 3% of CD8 T cells 
by day 9 and comparable to baseline (Figure 6D). Conversely, 
>90% of IFN-γ–producing CD8 T cells after 9mP rechallenge 
were PD1-negative. To independently evaluate cell activation, 
27mP-expanded BKPyV-specific CD8 T cells were examined 
for expression of PD1 and CD69, showing that IFN-γ–pro-
ducing CD8 T cells after 9mP rechallenge on day 9 are PD1–/
CD69+ (Supplementary Figure 3). We concluded that BKPyV-
specific effector memory CD8 T cells proliferated, were not ex-
hausted, and could be activated to secrete multiple cytokines.

Expanded BKPyV-Specific CD8 T Cells Are Cytotoxic in an 

HLA-Restricted Manner

To assess the specificity of BKPyV-specific CD8 T cells, 
27mP-dependent expansion was performed with PBMC pre-
parations from an HLA-B8 positive donor, for which the HLA-
B*08:02-positive 9m127 was available. Streptamer staining 
identified a population of HLA-B*08:02-positive 9m127-
specific CD8 T cells, representing 1.64% of the overall CD8 pop-
ulation after expansion, and which secreted IFN-γ after 9mP 
rechallenge (Figure  7A). Staining for CD107a antibody dem-
onstrated degranulation of the HLA-B8 9m127-binding CD8 T 
cells (Figure 7B). Moreover, the HLA-B8 9m127-binding CD8 
cells were able to kill 20% of target cells at a target:effector ratio 
of 1:20 (Figure  7C). We concluded that 27mP-pulsed mMo-
DCs can be used to promote the proliferation of polyfunctional 
cytotoxic effector memory BKPyV-specific CD8 T cells.

DISCUSSION

Given the lack of effective and safe antiviral therapies, BKPyV 
remains one of the most challenging causes of premature graft 
failure after kidney transplantation [9, 22]. In view of 50 000 
kidney transplantations each year in North America and Europe 
alone, at least 5000 patients are at risk, according to larger studies 
[10, 12, 15, 43]. The affected patients are faced with the limited 
option of reducing immunosuppression, the competing risk 
of rejection [6, 7, 22] and dire perspectives on waiting lists for 
retransplantation [44, 45]. However, we and others previously 
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demonstrated that reducing immunosuppression is associated 
with increasing BKPyV-specific T-cell responses [20, 33, 46] 
and clearance of BKPyV DNAemia, whereby CD8 T cells dir-
ected against immunodominant epitopes present in the viral 
nonstructural proteins may play a particular role for protection 
[21, 37, 38]. Thus, increasing BKPyV-specific cellular immu-
nity through adoptive T-cell transfer or vaccination may have 
the potential to reduce the risk of BKPyV-associated complica-
tions. In the present study, we therefore explored the potential 
of a novel 27mP for expanding BKPyV-specific CD8 T cells in 
vitro. Our study provides 3 main results: First, the 27mP can 
be used to expand BKPyV-specific CD8 T cells within 9 days 
of co-culture using PBMC-derived imMo-DCs, mMo-DCs, or 
Mo-LCs as APCs. Second, mMo-DCs appear to be most suit-
able due to consistently higher yields compared to imMo-DCs 
or Mo-LCs. Third, the resulting BKPyV-specific CD8 T cells 
have a functional 9mer epitope-restricted effector memory phe-
notype and are cytotoxic.

Our results are strengthened by the independent use of 2 dif-
ferent assays for characterizing the 9-day expansion cultures, 
namely ELISpot and flow cytometry, to measure the BKPyV-
specific T-cell responses as well as 2 different BKPyV antigen 
preparations, namely 15mP and 9mP. Conversely, no expansion 
responses were obtained after 9-day co-culture without prior 
pulsing of the APCs with the corresponding 27mP or 15mP. Our 
attempts to promote CD8 T-cell responses by depleting CD4+ 
cells from the co-culture resulted in a significantly reduced 
yield, suggesting the need for CD4 T-cell help during the expan-
sion. Although CD4 T-cell help could be important for several 
reasons including promoting a Th-1 cytokine milieu, the more 
direct contribution such as activating the cross-presentation of 
the large 27mer peptides to HLA class I on the APCs seems also 
likely. Consistent with the latter notion is the inability of 27mer 
peptides to increase HLA-A2 binding on T2 cells as well as the 
strong trend of the proteasome inhibitor lactacystin to reduce 
CD8 T-cell expansion.

Unlike the frequently used 15mP consisting of 180 peptides 
overlapping by 11 amino acids, our novel 27mP consisted of 36 
longer peptides overlapping by 8 amino acids covering the entire 
LTag and the common amino-terminal part of small tumor an-
tigen of BKPyV. Thereby, production and use of immunogenic 
epitopes becomes less complex, facilitating well-controlled fur-
ther developments of adoptive T-cell therapy or vaccination 
approaches. Both objectives are of significant interest given the 
unmet clinical need of BKPyV-associated diseases in transplant 
recipients [29]. While adoptive T-cell therapy is well underway 
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in dedicated settings with respect to production, the clinical im-
plementation, follow-up, and vaccination approaches are little 
explored to reduce the risk of BKPyV replication.

Our study has several limitations. We used PBMCs of 
healthy blood donors, who are not immunosuppressed. The 
dependence on CD4 T cells is notable and may limit the re-
sponses in kidney transplant recipients, who are at increased 
risk of infectious complication [47, 48]. The efficacy of BKPyV 
vaccination and adoptive T-cell transfer posttransplant is also 
limited by the reduced signal-1 response in the presence of 
calcineurin inhibitors [49] and would require a window of 
transiently reduced or modified immunosuppression with 
the inherent risks [22]. Also, dendritic cell counts in the 
blood of kidney recipients developing nephropathy may 
be low [50], although myeloid dendritic cells may be in-
creased in BKPyV-associated nephropathy [51]. Therefore, 
BKPyV peptide vaccination strategies may target patients 
pretransplantation for better responses, which can be safely 
boosted posttransplantation, and which may include adju-
vants such as MF59 used in inactivated influenza vaccines. 
Finally, although BKPyV is employing local strategies of im-
mune escape [26], the clearance of BKPyV replication sub-
sequent to reducing immunosuppression argues that cellular 
immune control is eventually sufficient, if immune effectors 
are high [22]. Through peptide vaccination delivered system-
ically by subcutaneous injection, we would aim at increasing 
the number of available immune effectors prior to extensive 
reactivation as well as rendering the response to reducing im-
munosuppression more effective.

In conclusion, synthetic 27mP permit expanding BKPyV-
specific CD8 T-cell responses when pulsing mature Mo-DCs 
in presence of CD4 T cells. The results suggest facilitated ap-
proaches to vaccination and adoptive T-cell therapies for pa-
tients before and after kidney transplantation. As direct next 
steps, preclinical models including HLA-humanized mice could 
be envisaged followed by phase 1 clinical trials.
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