Translational Research in Clinical Virology: From Bedside to Bench to the Patients

"Translational and Clinical Virology" is interested in translational research of virus infections to improve clinical diagnosis, prevention, and treatment. This includes:
- Respiratory viruses (RV);
- Human herpesviruses;
- Human polyomaviruses in vulnerable populations (e.g. HIV/AIDS; transplantation; autoimmune; inherited immunodeficiency).

We aim at characterizing 1) key determinants of virus pathology; 2) potential targets of antiviral intervention; 3) adaptive immune responses; 4) modifiable and non-modifiable risk factors in patients.

The focus on human polyomaviruses (HPyVs) serves as an example. In the last decade, 12 new HPyVs have been identified by molecular methods in addition to BKPyV and JCPyV known since 1971. Currently, at least 5 HPyVs have been convincingly linked to diseases, all in immunocompromized patients. Importantly, no specific antivirals are available for the treatment of HPyV disease making immune reconstitution the main stay of any therapeutic approach today.

The polyomavirus non-coding control region (NCCR) harbors the origin of viral DNA genome replication and promoter/enhancer controlling the sequential bidirectional expression of PyV early and late gene expression. We reported that kidney transplant patients with persistent BKPyV viremia showed the emergence of viral variants with rearranged NCCR. We demonstrated that the emerging m-NCCR caused an activated early viral gene expression, higher viral loads, and replication rates (replication capacity) in vitro, and more advanced disease in patients.

A similar dynamic change of the NCCR was seen in JCPyV of HIV patients with PML, linking activated early viral gene expression to replication and pathology. Importantly, non-rearranged JCPyV NCCR is activated by HIV explaining the high number of PML among HIV/AIDS patients.

We conducted extensive point mutation analyses of the archetype BKPyV/JCPyV NCCR identifying 3 phenotypic groups whereby Sp1 affinity and orientation governed bidirectional BKPyV early and late gene expression (Fig. 1). The pathologic relevance of the point mutations was supported by their identification in clinical isolates from patients with nephropathy and hematologic (cytotoxic) fluids, similar to HIV in JCPyV. BKPyV (re-)activation does not only result from failure of immune control, but also from activation from the NCCR.

Based on clinical studies, BKPyV viremia and nephropathy has been associated with transcriptional activator as main calcium inhibitor. We observed that cyclosporine A in vitro-stimulated BKPyV replication, whereas tacrolimus activated/accelerated BKPyV replication in vivo. Importantly, viral activation by tacrolimus was antagonized by sirolimus competing the intracellular binding protein FKBP-12 (Fig. 2). The data strengthen the theme that activation of virus replication plus failure of adaptive immune control synergizes in the emergence of opportunistic viral infections in immunocompromised hosts. This knowledge could be taken back to the clinical management of BKPyV not only by reducing immunosuppression, but by switching to low-dose cyclosporine plus mTOR inhibitor combinations.

Characterizing BKPyV T-cell responses through IGRAs to 15mers, we observed that BKPyV vgrf responses were generally stronger and involved mostly CD8 T-cells, whereas LTag responses were weaker, but contained a larger fraction of specific CD8 T-cells in peripheral blood. Since CD8 T-cells are the main cytotoxic effectors, and since LTAg rates limiting for BKPyV replication in vitro and in vivo (see NCCR mutant variants), we hypothesized that LTAg-specific CD8 T-cells are key effectors of antiviral immunity. We identified 39 of 90 predicted immunodominant 9mers responses that will be developed for T-cell vaccines (Fig. 3), and for clinical assays to guide immunosuppression reduction.

Hans H. Hirsch
Department of Biomedicine Microbiology
University of Basel
Division of Infectious Diseases and Hospital Epidemiology
University Hospital Basel

Group Members

Elina Teem Auj (PhD Student)
Norah H. (PhD Student)
Michela Curr (PhD Student)
Francesca Componigo (External Collaborator)
Kathrin Fytianou (PhD Student)
Baptist Huber (PhD Student)
Piotr Kardas (PhD Student)
Dentwan Carina Kraus* (Undergraduate Student)
Amandine Kaur (Master Student)
Dr. Ceila Lealob* (PhD Student)
Flavio Lombardo* (PhD Student)
Jacqueline Samonita* (Technician)

Selected Publications


Dr. rer. nat. Gunhild Unterstab
Administrative Assistant
Fabian Weisbach (Technician)
Marion Werni (Technician)
Sabrina Wil (PhD Student)
Zhi Yung Wu (PhD Student)


Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)
Dr. rer. nat. Tobias Bethge* (PhD Student)

Virus: Immunosuppression, Transplantation, Antibody, T-cells, Antivirals

Transplantation and Clinical Virology

Hans H. Hirsch
Department of Biomedicine Microbiology
University of Basel
Division of Infectious Diseases and Hospital Epidemiology
University Hospital Basel

Non-Modifiable Risk Factors in Patients.

Multidisciplinary Clinical Virology Approach to Improve Outcome in Vulnerable Patients

Together with Prof Nina Khanna and Prof M. Battegay; and Profs J Passweg, and J. Halter, a retrospective study on respiratory viruses (RV) in stem cell transplant recipients was conducted with special focus on the therapeutic role of oral rhinovirus. Also, we are participating in a multi-center randomized phase 3 study of a fusion inhibitor targeting respiratory syncytial virus in HCT recipients with upper or lower respiratory tract infections (GS-US-218-0108; GS-US-218-1502). Together with Prof D. Stobt and M. Tam, a prospective study of RV-multiplex testing in patients exacerbations of asthma and COPD. In a 5-year prospective study with Prof J Gavalda, Spain, we defined the role of RV for acute and chronic lung disease after lung transplantation.

Together with PD M.J. Kim, Prof S. Schaub and the Swiss Transplant Cohort Study (STCS), we are engaged in a multinational randomized trial (Dr O. Manuel, Lausanne; https://clinicaltrials.gov/ct2/show/NCT02538172) to study the role of CMV-specific T-cells in guiding the duration of valganciclovir prophylaxis. In collaboration with colleagues from Finland, USA, Italy, Spain, and USA, we aim at improving the traceability and commutability of CMV load tests to define the path forward to uniform criteria for FDA and EMA-approved clinical CMV studies for licensing antivirals and vaccines.

Together with the STCS, we organized a multicentre study to identify the BKPyV-specific T-cells in kidney transplantation. By the end of the study, more than 1800 Biopst samples from PBMCs will inform about super-dominant epitopes and their MHC-I context to improve risk assessment and immunosuppression reduction.

Nina Khanna, Manuel Battegay, Jürg Hutter, Ulrich Heirminger, Jakob Passweg, Stefan Schaub, Jörg Steiger, Dalana Stolz, Michael Tam
Infectious Diseases & Hospital Epidemiology, Transplant Immunology & Nephrology, Hematology and Stem Cell Transplantation, Clinic for Pneumology, University Hospital Basel (USBS), University Children’s Hospital of Basel (UABH)

Department of Biomedicine - Report 2014-2016